Волшебный двурог - Страница 83


К оглавлению

83

— А как же арабы восприняли вашу науку?

— Когда эти воинственные кочевники завоевали у осла-

— 248 —

бевшей Византии богатые и плодородные долины Египта, Сирии и Северной Африки, то там образовались могущественные и роскошные государства арабов. И великолепные калифы, так же как и владыки из дома Птолемеев, помогали ученым. Арабы стали собирать, изучать и переводить греческие рукописи. Среди их новых подданных, особенно в Сирин, оставались образованные люди, которые им помогали в этом. Наука Индии тоже пришла к ним на помощь. Они изучали труды греческих геометров и философов, устраивали библиотеки, обсерватории, мощные и величественные развалины которых еще и теперь вызывают удивленно. Арабы вели долгие войны с ослабевшей, но не раз выстаивавшей Византией, и до нашего времени дошли тексты мирных договоров арабских калифов с византийскими базилевсами, по которым побежденные византийцы обязывались передать своим победителям — арабам — некоторое количество драгоценных греческих математических манускриптов. Вот как ценили арабы греческую науку! В дальних городах, вроде Хивы и Самарканда, выросли новые ученые, которые изучали геометрию Евклида, арифметику Диофанта и под влиянием индийских ученых начали строить новую науку — алгебру. В девятом веке арабский ученый Альхваризми уже формулировал элементарные положения этой науки. Его творения затем через сотни лет переводили в Европе. Арабское имя этого автора очень странно звучало для полуграмотных переписчиков книг, и они переименовали его в Алгорифм. Это слово и по сию пору осталось в математике как термин, подобно тому, как именем известного физика Вольты называют физическую единицу, которой измеряется напряжение электрического тока. (Математики называют алгорифмом некоторую твердо определенную последовательность действий с буквами или числами, которая должна нас привести в конце концов к цели, поставленной нами в данном случае. Мы, например, можем говорить об алгорифме деления многозначных чисел, об алгорифме извлечения квадратного корня, об алгорифме Евклида для нахождения общего наибольшего делителя — способе последовательного деления. В более общем смысле мы называем алгорифмом целую систему правил для вычислений, которая применяется для решения ряда связанных между собой вопросов. Вот в этом смысле мы и говорим об «алгорифме десятичных дробей» и понимаем под этим выражением все те правила, которые относятся к действиям над этими дробями.) Только уже после крестовых походов Западная Европа наконец ознакомилась вплотную с математикой. А после того как турки взяли Византию и совершенно разрушили это государство, греческие беженцы привезли европейцам древние

— 249 —

рукописи, уцелевшие в Византии, где они переписывались, комментировались, даже изучались, но на практике применялись только разве что для нужд лженауки астрологии, то есть гадания по звездам. Так вообще было и на Востоке. Но после появления в Европе византийских рукописей (а это уже было в пятнадцатом веке) и начинается истинное возрождение математики в Европе, хотя почва для этого уже была подготовлена учеными двенадцатого века, которые узнали наконец греческие сочинения. Но это развернулось во всю силу только тогда, когда после долгих времен мрака и суеверия люди снова начали изучать природу опытами и когда ученые показали, что наша наука нужна не для разных детских глупостей, вроде гадания по звездам, а для развития техники. Вот как это было, если сказать вкратце. Надо еще добавить и то, что церковь долгое время боролась с наукой, уверяя, что старые легенды древних евреев, нравоучительные басни необразованных людей были гораздо более совершенной истиной по сравнению с тем, что может открыть наука.

— Как так? — спросил Илюша.

— Сейчас даже трудно понять, как мыслили люди, которые защищали древние сказки против научных истин. В старых сказках, например, говорилось, что Солнце ходит вокруг Земли, и естественно, что необразованный человек так и должен думать. Когда же ученые пытались доказывать, что это не так, то церковь сперва начала их убеждать, что так думать грешно, а потом, когда это не подействовало, она стала их сажать в тюрьмы, мучить и казнить самым жестоким образом. Джордано Бруно умер, сожженный живым на костре в Риме. Вот какие убедительные доказательства приводила церковь, оспаривая положение, что центром Солнечной системы является не Солнце, а Земля! Когда ученые говорили, что Луна не планета, что планет всего не семь, а больше семи или меньше и что Солнце нельзя называть планетой, то им отвечали, что это невозможно по той причине, что семь — священное число. В доказательство этого удивительного соображения церковники говорили, что ведь и голова человека имеет семь отверстий, но не больше и не меньше. А отсюда для них было очевидно, что и планет может быть как раз не больше и не меньше семи. Коротко и ясно. Один из старинных математиков с большой опаской говорил об умножении дробей, боясь впасть в противоречие с библией, ибо там слово «умножить» употребляется только в смысле «увеличить»! Вот в каких условиях должны были люди бороться за науку. Но они не падали духом, боролись и победили. Вот почему ты уже сейчас знаешь больше того, что знали средневековые грамотеи. Не забывай об этом!

— 250 —

— Нет! — отвечал мальчик. — Я узнал здесь много удивительных вещей, но, пожалуй, всего удивительнее — это то, с каким самоотвержением и с какой энергией ученые боролись с невежеством и каким замечательным мужеством они обладали. Даже подумать страшно, как же это можно рассуждать о том, что такое бесконечность, когда за число семь тебя могут казнить!

83