Волшебный двурог - Страница 40


К оглавлению

40

— Конечно.

— Следовательно, самый малый треугольник, на котором лежит верхнее ядро, составлен из трех ядер. В нем есть только одна-единственная лунка, и в ней-то и лежало верхнее ядро. Теперь следующий слой, третий. Сбоку у него с каждой стороны по три ядра. Конечно, этот второй ядерный треугольник тоже равносторонний, и сторона его равняется трем ядрам. В нем всего шесть ядер. Как он устроен? Очень просто. Взят второй слой из трех ядер, и к нему добавлено с одной стороны еще три ядра. В этом третьем слое есть четыре лупки, но из них идут в дело только три, потому что для четвертого ядра уже места нет. Теперь четвертый слой. Он получается из третьего путем добавления с одной из сторон еще четырех ядер. В нем всего десять ядер и девять лунок, по заняты только шесть — для остальных трех ядер нет места.

— Расскажи-ка мне подробно про эти лунки, — предложил Радикс.

— Дело вот в чем: если я на чертеже соединю центры ядер прямыми, то из каждых трех ядер получу равносторонний треугольник, сторона которого равна диаметру ядра.

— 118 —

Среднее черное ядро в четвертом слое — первое из тех, которые нельзя увидеть сбоку.

В четвертом ядерном слое всего десять ядер. Они образуют на чертеже (стр. 120) шесть заштрихованных («черных») треугольничков. Эти треугольнички соответствуют тем лункам, на которые можно положить ядра третьего слоя. Центры шаров (ядер) этого третьего слоя придутся как раз над средними точками этих треугольничков, и расстояния между ними опять будут теми же самыми.

Но есть еще треугольнички, которые не заштрихованы («белые»): их три. Они-то и дают еще три лунки, на которые нельзя положить ядра, потому что расстояния от их средних точек до средних точек заштрихованных треугольничков вдвое меньше, чем требуется. Но можно было бы, разумеется, поступать и наоборот, то есть пропускать «черные» лунки и класть ядра только на «белые».

— Хорошо, — отвечал Радикс, — пусть будет так. Но как же ты решил насчет двенадцати ядер, с которых начался наш разговор?

— Сейчас подумаю. Для этого я возьму тот же четвертый слой. В схеме треугольничков я оставляю без внимания три крайние точки — А, В, С. Тогда, если обвести жирной линией периметр оставшейся фигуры, получится шестиугольник, правильный, разумеется. В нем один шар (то есть одно ядро) посредине, а кругом шесть точек для ядер.

— Значит?

— Значит, кругом ядра, находящегося внутри кучи, лежат по сторонам шесть ядер.

— Ясно. А сколько лежит сверху его и снизу? Ну-ка, подсчитай!

— Так как мой шестиугольник состоит из трех «черных» треугольников, то, значит, он образует три лунки для ядер (остальные будут лишними), а следовательно, сверху можно положить т р и ядра. Снизу же седьмое, то есть центральное,

— 119 —

Шесть треугольников четвертого слоя.

ядро, о котором мы толкуем с тобой, тоже опирается на три ядра, что ясно из тех же самых соображений. Итого: шесть, да три, да еще три — выходит двенадцать. Так оно и есть. Вот так здорово вышло!

— Здорово-то здорово, но дело в том, что ты все это делал с ядрами в руках. А как бы это нам с тобой рассудить вообще, не касаясь ядер? Вот что интересно.

Илюша задумался. Ему казалось, что и без того все ясно, но высказать эту храбрую мысль он почему-то не решился. Радикс немного поморщился и произнес:

— Вот передо мной кучка ядер в два слоя: в первом слое, как обычно, одно ядро, во втором — три. Ясно?

— Вполне.

— Прелестно и очаровательно! Теперь пусть фигура не разрушается, пусть линии, соединяющие центры ядер, не расплываются и не укорачиваются, а ядра уменьшатся почти до размеров точки, только чтобы можно было заметить глазом.

Тетраэдр.

Немедленно все совершилось как по-писанному. И вскоре перед Илюшей на полу стояла некая геометрическая фигура, очень похожая на те проволочные модели, с которых рисуют начинающие живописцы. Ядра стали толстыми «точками» в углах фигуры, а центры ядер соединились тонкими линиями.

— Это, — сказал Радикс, — не что иное, как тетраэдр, один из правильных многогранников, каждая грань которого есть равносторонний треугольник. Их всего четыре, столько же у него и вершин (вспомни, что в той фигуре, с которой мы начали, было тоже четыре ядра), а ребер у тетраэдра шесть. Пять правильных многогранников были известны еще грекам, в частности о них писал Платон, почему их нередко называют Платоновыми телами. Вот они каковы: тетраэдр, ограниченный четырьмя правильными треугольниками; октаэдр, ограниченный восемью правильными треугольниками; икосаэдр, ограниченный двадцатью правильными треугольниками; куб — известное тебе

— 120 —

тело, ограниченное шестью квадратами, и додекаэдр, ограниченный двенадцатью правильными пятиугольниками. Так вот, перед тобой здесь тетраэдр. Рассматривая его, можно легко понять, как лежат ядра в куче. Надо иметь в виду, что нужно уложить ядра так, чтобы они располагались наиболее плотно. Чтобы нам в этом разобраться, начнем с более простой задачи. Как уложить на плоскости возможно больше кругов, которые должны частично соприкасаться, но нигде не перекрываться? Рассуждение приводит нас к выводу, что наиболее плотное (решетчатое) расположение кругов на плоскости получается, если центры трех кругов, из которых только два лежат в одном ряду, образуют равносторонний треугольник, сторона которого, очевидно, равна диаметру круга. Когда мы теперь переходим к расположению не кругов на плоскости, а шаров в пространстве, то очевидно, что пока речь идет о расположении шаров в одни слой, остается верным правило равностороннего треугольника, которое мы формулировали для кругов на плоскости. Но когда дело касается наиплотнейшего расположения шаров в пространстве, тут задача несколько усложняется. Как ты уже отметил (и совершенно правильно), мы не имеем возможности укладывать шары в следующем слое в каждую лунку — для этого шары слишком велики, — следовательно, нам надо выбирать те или иные лунки. Ты сам это заметил, когда говорил о шестиугольнике. Помнишь?

40