— 442 —
Невсис Паппа.
DE = 2AB
FH || АС
АН = НЕ
— Да, — отвечал Радикс, — такой способ был, даже не один. Интересен способ так называемого невсиса, или способ «линейки с двумя метками», с которым мы познакомились уже в Схолии Пятой, способ полезный и чрезвычайно поучительный. Архимед в своих трудах нередко пользуется этим способом. И в древности были такие чудаки, которые его за это поругивали! На линейке можно поставить две метки, а вообще при построениях циркулем и линейкой линейка служила только для того, чтобы провести прямую! И этих меток уже вполне достаточно, чтобы получить возможность решать кубическое уравнение. Вот как решает этим способом Папп Александрит задачу на трисекцию. На нашем чертеже дан угол ABC, который надо разделить на три части. Пусть AC _|_ ВС; проведем через А прямую АЕ, параллельную ВС, возьмем отрезок, который, как мы уже знаем, будет вдвое больше АВ (для этого-то и нужны отметки на линейке!), так, чтобы его левый конец D лежал на АС, правый, то есть точка Е, на АЕ, а продолжение его проходило бы через точку В.
В таком случае угол CBD будет равен одной трети угла ABC. Это надо доказать.
— Попробую, — отозвался Илюша. — Для начала найдем середину отрезка DE, поставим там точку F и соединим ее с точкой А. Значит, этот треугольник EAD прямоугольный.
— 443 —
Вокруг него можно описать окружность, рассматривая отрезок DE как диаметр. Но если точка F будет его центром, то все три отрезка, то есть FD, AF и EF, равны друг другу, как радиусы этого описанного круга, и каждый равен половине отрезка DE или отрезку АВ. Дальше: треугольник ABF, очевидно, тоже равнобедренный в силу этого последнего равенства, а значит, его углы ABF и AFD равны друг другу. Треугольник AFE, конечно, тоже равнобедренный, это ясно из тех же равенств отрезков. Но угол AFD по отношению к треугольнику AFE есть его внешний угол, и следовательно…
— Ну хватит, пожалуй!— сказал Радикс. — Я вижу, ты понял. Доказательство не такое уж хитрое. Правильно ты начал рассуждать.
— Так и есть! — согласился Мнивши. — Очень похожее решение этой задачи даст примерно тем же методом и Архимед. Ученые полагают, что именно раздумья над этим невсисом Архимеда и привели Виету к открытию тригонометрического решения кубического уравнения, так что невсис оказал немалые услуги нашей науке. Виета выяснил, что задача трисекции угла, над которой так мучились в древности, тем и трудна, что сводится к кубическому уравнению.
— Хорошо! — сказал с удовольствием Илья, который был в прекрасном настроении, поскольку ему удалось перескочить через длинное доказательство насчет невсиса и трисекции. — Но мне хочется, чтобы вы еще сказали несколько слов насчет этого знаменитого «правила циркуля и линейки».
— Видишь ли, — отвечал Радикс, — один из крупнейших древнегреческих ученых, Аполлоний Пергейский, современник Архимеда, в своем сочинении о конических сечениях говорит о том, что все геометрические построения должны выполняться только с помощью циркуля и линейки. Вообще в Древней Греции этого правила, конечно, не придерживались, но ему придавали очень большое значение в эпоху возрождения наук в Европе. Этот интерес несколько ослаб, когда Виете удалось впервые обнаружить, что именно это требование означает алгебраически: в таком случае нельзя пойти дальше построения корня квадратного, то есть решения квадратного уравнения либо такой задачи, которая сводится к последовательному извлечению ряда квадратных корней. Среди средневековых работ есть одна замечательная трисекция угла, выполненная очень простыми средствами Гиясэддином ал-Каши, талантли-
— 444 —
Трисекция Гиясэддина ал-Каши.
Хорды — двойные синусы. По теореме Птолемея (если четыре вершины четырехугольника лежат на окружности, сумма произведений противоположных сторон равна произведению диагоналей), из четырехугольника AEGH, АЕ = EG = GH и EH = AG, выводим, что AG = АЕ + АЕ · АН. По теореме Евклида (произведение отрезков хорды равно произведению отрезков диаметра, проходящего через точку пересечения диаметра с хордой), так как AG = GC, получаем AG = BG (2R — BG), где R — радиус большого круга; затем но теореме Пифагора из треугольника ABG выводим: AG= 4 AE— (4 AE: R).
Приравнивая два выражения для AG, получаем: АЕ + AЕ · АН = 4 АЕ — (4 АЕ : R). Полагая, что АЕ = sin а и что АН = sin За (ибо хорда АН стягивает утроенную дугу), а R = 1, получаем для любого угла выражение 3 sin а — 4 sin a = sin За.
Благодаря этому построению замечательные самаркандские математики в XV веке сумели вычислить синус одного градуса с восемнадцатью точными знаками после запятой.
вым математиком, одним из последних ученых исламитского мира, который трудился у знаменитого астронома Улугбека в Самарканде в пятнадцатом веке. Работы Улугбека были уничтожены реакционным духовенством, его обсерватория разрушена, а сам он был убит. Но память о работах ученых его школы осталась, и в шестнадцатом веке Мариам Челеби, внук ар-Руми, астронома, работавшего вместе с Улугбеком, обнародовал решение задачи трисекции угла. В Европе это решение узнали только в девятнадцатом веке. Это решение не дает искомого угла построением, как невсис Паппа. Но при его помощи можно получить нужное кубическое уравнение.