Волшебный двурог - Страница 94


К оглавлению

94

Если взять секущую MN и в точке N провести к ней перпендикуляр АВ, а в точке М наклонять второй перпендикуляр, уменьшая его угол с секущей со стороны точки В, то наклонная, проходящая через точку М, начнет пересекать прямую АВ, только когда угол наклона станет меньше некоторого острого угла φ. Этот острый угол (он тем ближе к прямому, чем меньше расстояние MN) Лобачевский назвал углом параллельности, а наклонную в том крайнем положении, когда она еще не пересекается с перпендикуляром АВ, он назвал проходящей через точку М параллельной к АВ в сторону В. С другой стороны секущей получается та же самая картина. Крайнее положение наклонной, при котором точки пересечения еще нет, и будет второй «параллельной»

— 279 —

Лобачевского — параллельной в «другую сторону». Поэтому на нашем чертеже все прямые Лобачевского, проходящие через точку М, разделяются двумя параллельными — «в сторону A» и «в сторону В» — на две категории. Одни, образующие с перпендикуляром NM угол, меньший «угла параллельности» φ, пересекают прямую АВ. Другие, образующие с перпендикуляром прямой или хотя и острый, но больший угла параллельности угол, проходят между двумя «параллельными» и не пересекают прямой АВ ни с той, ни с другой стороны. Они называются расходящимися с прямой АВ. Параллельные, конечно, тоже не пересекаются с АВ, но они выделяются из числа всех не пересекающихся с АВ прямых, проходящих через точку М, как раз тем, что положение параллельности — крайнее, при котором нет точки пересечения: две параллельные отделяют, таким образом, все пересекающие прямые от расходящихся. В отличие от геометрии Евклида, сумма внутренних односторонних углов, образованных параллельной в данную сторону с секущей, меньше двух прямых, так как угол параллельности φ острый. Величина этого угла зависит от расстояния MN. Еще греки, по всей вероятности, догадывались о таких возможностях.

— Значит, — решил Илюша, — это гораздо хитрее того, что мы учим в школе о параллельных?

— Ну еще бы! — отвечал Радикс. — Если бы это было то же самое, так ведь тогда и говорить было бы не о чем.

— Какая же она, однако, удивительная, эта геометрия! — задумчиво произнес Илюша.

— Если хочешь знать, — отозвался Радикс, — сферическая геометрия еще удивительнее «воображаемой», только мы

— 280 —

к ней более привыкли благодаря тому, что глобус стал нам приятелем со школьной скамьи, если не раньше. А если подумать, то нетрудно убедиться в этом. Сравни хотя бы такие обстоятельства. Прямая у Евклида безгранична, у Лобачевского тоже, а на сфере она (например меридиан) не только не безгранична, но еще и замкнута.

— Да! — отвечал Илюша. — А ведь действительно так!

— Насчет же всяких неожиданностей в «воображаемой» геометрии, так я могу тебе подарить на память еще один такой случай. Если ты возьмешь на плоскости Лобачевского окружность, разделишь ее на несколько равных частей и в точках деления проведешь касательные к этой окружности, то они образуют многоугольник только в том случае, если радиус окружности очень невелик, а в противном случае они вовсе не встретятся и не пересекутся.

— Мы можем, — добавил Асимптотос, — показать тебе еще кое-что по поводу треугольников Лобачевского, но только это будет потруднее. И нам кое в чем придется с тобой условиться.

— Как это условиться? — спросил Илюша.

— Вот как. Мы знаем, что роль «прямых» на сфере играют дуги больших кругов. А теперь мы условимся считать «прямыми» на сфере не дуги больших кругов, а дуги некоторых других кругов. Мы начнем с того, что рассечем сферу пополам. Положим полусферу на плоскость сечением вниз. А далее согласимся считать дуги кругов, плоскость которых перпендикулярна к той плоскости, на которой лежит наша полусфера, прямыми. Надеюсь, что ты понял меня?

— Но ведь можно «условиться» о чем угодно! — сказал в недоумении Илюша. — Захочу и «условлюсь», что у меня семь равняется нулю. Так что ж, так и будет?

— Мне кажется, — отвечал Радикс, — что не так уж трудно придумать случай, когда такое равенство будет иметь смысл. Например, допустим, что ты будешь различать числа только по остаткам, которые они дают при делении на семь. Ясно, что в этом смысле 1, 8, 15 и так далее будут равны между собой; 2, 9, 16 и так далее будут также равны между собой, а 7 окажется равным числам 0, 14, 21 и прочим. Тебе может показаться, что это бессмыслица. Но допусти, что некоторый месяц начинается в воскресенье и мы обозначим этот день нулем, понедельник — единицей, вторник — двойкой и так далее. Тогда, если мы интересуемся только днями недели, а «нуль», «семь» и «четырнадцать» — все будут обозначать воскресенья, то в этом смысле ты можешь не делать между ними различия. Так что уже не столь бессмысленно «условиться», что семерка равна нулю. Имей в виду, что при изучении известных вопросов вполне возможно поставить некоторое осо-

— 281 —

бое условие, и это может даже сделать для нас доступными такие вопросы, которые без этого трудно было бы исследовать.

— Пожалуй, — сказал Илюша, — я с таким рассуждением готов согласиться, но вот чего я боюсь: если мы условимся считать какие-то линии на сфере «прямыми», смогут ли эти «прямые» сохранить свои обычные свойства? А если не сохранят, то разве это будут «прямые»?

94