Волшебный двурог - Страница 68


К оглавлению

68

— А почему же, — спросил Илюша, — нельзя просто сказать, что единица отложится «бесконечное число раз»? Ведь мы говорим же, что число всех чисел бесконечно или что на отрезке умещается бесконечное число точек…

— И здесь эти выражения имеют тот же самый смысл, — отвечал Радикс (ибо Магистр Деревьев уже исчез). — Сосчитать все точки на отрезке невозможно. Когда ты говоришь, что число точек на отрезке бесконечно, то только признаешься в том, что сколько бы точек ты ни отметил, всегда можно найти на отрезке еще одну, не отмеченную, и так дальше, без конца. Недаром же мы произносим слово «бес-конечность». Вспомни Архимеда: ведь как раз его задачей и было доказать современникам, что какое бы большое число ни назвать, всегда можно построить еще большее.

— А все-таки непонятно: почему же мне не называть бесконечность числом? — спросил Илюша. — Ведь если говорить, что длина луча равна бесконечности или что число точек на

— 202 —

отрезке равно бесконечности, то ведь всякому будет ясно, что это значит…

— Ну что ж, — ответил Радикс, — если употреблять эти выражения в том смысле, в каком мы с тобой только что говорили, то в этом ничего плохого нет. Но когда ты говоришь: «Что-то превратилось в бесконечность», нельзя забывать, что это имеет определенный смысл, ибо то, что «превращается» во что-нибудь, перестает уж быть тем, чем оно было до этого: отрезок превращается в луч, множество чисел, каждое из которых ты можешь рассмотреть и назвать в отдельности, «превращается» в бесконечное множество всех чисел, в котором пересмотреть до конца элементы один за другим уже не удастся. Это «превращение» — очень хитрая штука. Ты можешь, конечно, вообразить, что тянул, тянул отрезок да и растянул его в луч, как делал с перпендикуляром, поворачивая наклонную до параллельности с ним. Но это ты только воображаешь себе. На самом деле бесконечный луч построить нельзя, а можно только представить себе бесконечный процесс удлинения отрезка. И то, что ты представляешь себе в качестве результата этого процесса, это уж совсем не отрезок, а нечто существенно отличное от отрезка.

— И затем, — сказал Илюша, — я вот еще что хотел спросить. Ты говоришь, что количество точек на отрезке прямой бесконечно, то есть эти точки нельзя исчерпать, перебирая их одну за другой. Ну хорошо, а если сказать, что бесконечность есть именно такое число, которое выражает количество точек на отрезке или вообще количество каких-либо вещей, процесс пересчитывания которых закончить невозможно?

— В некотором, строго определенном смысле можно и так говорить. Но как только ты скажешь, что бесконечность — число, то сейчас же возникает новая опасность. Числа ты можешь сравнивать по величине, складывать их, вычитать, а с бесконечностью в том смысле, как ты ее только что определил, нельзя обращаться, как с числами…

— Ты расскажи, отчего нельзя, — попросил Илюша.

— Вот отчего. Если луч удлинить на десять сантиметров, присоединив к нему в его начальной точке отрезок именно этой длины, то станет ли после этого длина нового луча действительно больше на десять сантиметров или останется прежней? Ведь если снова измерять новый луч, не зная, прибавляли ли к нему еще что-нибудь или нет, то обнаружить разницу по сравнению с тем, что было, ты не сможешь. И в том и в другом случае ты получишь бесконечную последовательность отложенных единичных отрезков и можешь даже их наложить друг на друга: первый на первый, второй на второй и так далее. Поэтому говорить, что второй луч на десять сантиметров

— 203 —

длиннее первого, — это значит произносить фразы, не имеющие никакого смысла. Вот что получается со сложением. А с вычитанием еще того хуже: накладывая два луча друг на друга, я могу сдвинуть при этом их начальные точки так, чтобы между ними образовался отрезок любой длины. А следовательно, если ты напишешь, что бесконечность минус бесконечность есть нуль, то и в этом не будет никакого смысла. Значит, такое равенство может привести к грубым ошибкам. Мало того, я из одного луча могу соорудить два точно таких же, так что и с делением и с умножением тоже получается неладно. Поэтому раз с бесконечностью нельзя обращаться, как с числом, то уж лучше совсем и не называть ее числом.

— Постой, как же так: из одного луча два? — спросил Илюша.

— А это тебе объяснит Мишка в следующей схолии, — ответил Радикс.

— 204 —

Схолия Двенадцатая,

где читатель снова встречает Мишеньку, который показывает талисман, замечательный своей полной неистребимостью, а Радикс рассказывает поучительную сказку об одном остроумном директоре гостиницы, а также о том, как Галилей подсчитал однажды, сколько всего есть на белом свете полных квадратов, и о том, как на школьном вечере все танцевали вальс. Тут наш герой проявляет необычайный интерес к прядильному делу, однако с этой проблемой приходится обождать, ибо в это время Илюша должен срочно разрезать одно яблоко на семнадцать миллионов частей. Далее идет очень сложное обсуждение вопроса о том, существует ли особая форма для кривых и какова она. А после того, когда все по этой части благополучно разрешается при помощи прямого угла, так что Илюше удается даже выяснить, какие у этих кривых корни, друзья наши отправляются в лес, где их встречают очень странные существа, наперерыв расхваливающие свой товар, сообщая, кстати, Илюше рецепт, с помощью которого жизнь человека удлиняется ровно вдвое. Наконец друзья приходят в прелестную столовую, где один подслеповатый повар принимает Илюшу в своем кулинарном рвении за гриб.

68