Волшебный двурог - Страница 59


К оглавлению

59

— Да! — отвечал в почтительной задумчивости мальчик. — Только ведь это сочинение Архимеда о счете песка никаких особенных задач не решает. Правда?

— Ошибаешься! — отвечал Радикс. — Это сочинение имеет необыкновенно важное значение, и даже гораздо более важное, нежели решение какой-либо частной проблемы. Оно ставит такие серьезные вопросы, которых никто еще до Архимеда на практике не решался касаться; если же и касался, то, так сказать, несознательно, не представляя себе всей важности этой задачи. Она, в частности, заключается в доказательстве положения, утверждающего, что ум человеческий

— 177 —

способен легко строить числа, превышающие любую заранее заданную величину. Сам Архимед определял задачу этого сочинения так: оно должно доказать, что данное число песчинок не бесконечно и что возможно построить число, превышающее его. Но ведь песчинки — только частный пример, поэтому я настаиваю на моем первом определении задачи «Псаммита» (так называется по-гречески это сочинение Архимеда).

— Это очень интересно, — ответил Илюша поразмыслив. — Но ведь это только для того, чтобы посмотреть, к чему приведет такая странная задача? Не правда ли?

— Напрасно ты так думаешь, — ответил, нахмурясь, Радикс, — совершенно напрасно!.. «Псаммит» был сочинен Архимедом не для праздной забавы, отнюдь. Чем более серьезные задачи ставил перед собой человек в те древние времена (задачи из области физики, механики, астрономии и так далее), тем более сложный математический аппарат ему был нужен. И вот, чтобы начать строить этот аппарат, ему, человеку, и понадобились очень большие числа. Громадные! Необъятные! И «Псаммит» Архимеда был первым серьезным шагом в этой области. После того как содержание этого сочинения Архимеда было усвоено, можно было ставить себе и иные задачи. Например: что мы будем получать, если начнем последовательно делить единицу на ряд чисел Архимеда и дойдем до самых больших из названных им чисел?

— По-моему, — сказал Илюша, — это будет история путешествия синьориты Одной Энной по натуральному ряду.

— Недурно сказано! — воскликнул Радикс. — Недурно!

— По-видимому, эта особа будет все уменьшаться в объеме.

— А не найдешь ли ты такого числа, на которое она все более и более будет походить?

— Не знаю, — произнес мальчик осторожно, — какое же это может быть число. Ну, разве что нуль? То есть я хочу сказать, что чем дальше будет продолжаться прогулка синьориты Одной Энной по натуральному ряду, тем труднее ее будет отличить от нуля.

— Это разумный вывод, — отвечал одобрительно Радикс. — Так, конечно, и будет. Ну, а что случится, по-твоему, если я возьму все значения твоей приятельницы, госпожи Одной Энной, и начну теперь делить единицу на каждое из ее значений? Ну-ка!

— Ясно, — отвечал Илюша, — что ты снова получишь все те целые числа, с которых я начал, когда мы заговорили и синьорите Одной Энной.

— Прелестно! Рад от души!.. Но скажи на милость, а нет ли такой величины или даже такого математического образа, на который все более и более будут походить эти все расту-

— 178 —

щие и растущие обратные величины значений синьориты Одной Энной?

Илюша не знал, что ответить на это, и только высказал предположение, что числа эти будут невообразимо громадны, так что вскоре даже и слава пресловутого «последнего» архимедова числа сильно потускнеет.

— Послушай, Илюша, — промолвил» Радикс, — ты только что сказал: что ни далее, тем значения синьориты Одной Энной все менее и менее будут отличаться от…

— От нуля.

— Правильно. Следовательно, перед нами будет ряд частных, делители которых все приближаются и приближаются к нулю. Прекрасно! А к чему же будут приближаться частные?

Илюша призадумался. Затем он сказал так:

— Видишь ли, я слышал, что есть такое слово «бесконечность». Только я не знаю: правильно ли будет, если мы сейчас о нем вспомним? Как ты скажешь?

— Это дело серьезное. И даже весьма. Тут есть над чем голову поломать. А в общем, чтобы подвести итог нашему разговору о «Псаммите», попробуй скажи мне в одной фразе, что там говорится.

Илюша подумал и ответил так:

— Какую бы мой собеседник величину ни назначил, я немедленно сооружу число во много раз больше.

И Радикс улыбнулся, на этот раз вполне удовлетворенный ответом Илюши.

— 179 —

Схолия Одиннадцатая,

которая, во-первых, довольно длинная, а во-вторых, не так уж проста, так что читателю придется проявить если не упрямство, то немалое упорство, коли он хочет и дальше играть в схолии. Однако если не читать этой схолии, то и вообще больше ничего читать в этой книжке не придется. Поэтому тот, кто хочет читать далее Одиннадцатой Схолии, должен запастись мужеством. Тогда он узнает кое-что новое о яблоках, о кружочках и прутиках одного не очень послушного и даже упрямого мальчика, который жил неподалеку от одной большой горы. Именно тут Илюша слышит превосходные арифметические рассуждения, но как только дело чуть-чуть касается геометрии, поднимается невероятная кутерьма, вызванная появлением некоего неуклюжего авиадесанта, одолеть который только и можно с помощью вышеупомянутого упрямства.

— Ну-с, уважаемый Илья Алексеич, — произнес важно Радикс, — изложите мне вкратце, как вы себя изволите чувствовать.

Илюша посмотрел на него немного подозрительно, припомнив не совсем приятный разговор с командором, но потом решил, что вряд ли Радикс вспоминает именно об этой истории.

59