Волшебный двурог - Страница 24


К оглавлению

24

Начерти-ка сам схему путей этого лабиринта и схему его обхода!

— Так, — отвечал Илья. — Теперь как будто все ясно. Действительно, если я должен облазить все дерево, значит, надо облазить каждую ветку, а спускаться вниз я начну только тогда, когда отмечу все ветки. Именно это я и буду делать в лабиринте, превращенном в дерево или в тупиковый лабиринт, если буду соблюдать второе наше правило, то есть не уходить с перекрестка по первому пути, пока есть другие, еще не пройденные дважды коридоры.

— Вот ты разберись хорошенько во всех наших схемах, особенно в схеме УУУ, и тогда все ясно станет. А потом попробуй сам на досуге поразмыслить вот над чем. Наше правило обеспечивает двойной обход лабиринта. А может быть, можно обходить дважды не все коридоры? Ведь схему коридоров лабиринта все же иногда удается превратить в уникурсальную фигуру, удваивая не все коридоры лабиринта. Ну-ка, попробуй найти какое-нибудь общее правило для этого. Ты сам пробовал ходить по лабиринту и знаешь, что это довольно утомительно. Нельзя ли как-нибудь уменьшить количество этих скучнейших, а быть может — кто знает? — и совершенно лишних хождений взад и вперед по одним и тем же коридорам? При этом, конечно, надо сделать так, чтобы весь лабиринт обойти, и в центре его побывать, и выйти на белый свет от-

— 73 —

 туда. Вот тут-то, друг Илюша, тебе и придется вспомнить кое-что из того, о чем мы с тобой толковали. Например, о топологической схеме лабиринта, затем о четности перекрестков-узлов в лабиринте и еще кое о чем…

Илюша посмотрел на Радикса и задумался.

— Вот уж не думал, — сказал он через минутку, — что задача о лабиринтах такое сложное дело! Читал я про них в разных книжках, и мне казалось, что это очень просто. Мне только вот еще что приходит на ум. Мы с тобой разбирали лабиринты на плоскости. А могут существовать лабиринты в пространстве?

— Разумеется! Больше того, ведь только такие лабиринты и существуют в действительности. Коридоры копей, каменоломен, шахт, катакомб, как и сплетение подземных ходов, которые роет крот, можно рассматривать как пространственные лабиринты. И все наши правила отлично годятся и в этом случае,

Лабиринт, который построил специально для любителей элоквенции У. У. Уникурсальян, К. Т. Н., Д. Ч. и Н. У., М. Д., К. и К. О. С. М., П. В. В. М.


— 74 —

ибо они от числа измерений не зависят. Только твое правило правой руки тут никак не удастся применить.

— Уф! — воскликнул Илюша. — Все-таки это все довольно хитро. Но на досуге я все обдумаю и разберу как следует…

— Итак, — заметил Радикс, — мы с тобой не торопясь разобрали подробно две немаловажные задачки, а в продолжение этого разбора коснулись некоторых довольно серьезных вещей. Не так уж плохо! Чем с большей старательностью ты отметаешь все излишнее, тем скорее приближаешься к решению…

Илюша задумчиво посмотрел на своего всеведущего друга и промолвил:

— Да… пожалуй… Что ж еще осталось мне спросить у тебя? А, вспомнил! Что это за интересный зверек бегал все время через лабиринт то вперед, то назад, точно заводной, у этой страшной тетушки Розамунды?

— А-а, — засмеялся Радикс, — тебе понравилась ее мышка! Она, братец, не простая мышка, а даже очень умная. Эта мышка — электронный робот. У нее превосходная электронная память, и для нее решить задачу лабиринта довольно просто. Она быстро запоминает свои ошибки и во второй раз уже не ошибается, а бежит по лабиринту, как по садовой аллее.

— 75 —

— Интересно!.. А кто такая богиня Лилавати, которую тетушка поминает через каждые два слова?

— Лилавати — прекраснейшая и благороднейшая богиня, — сказал Радикс. — Древние индусские математики называли ее «Прекрасная дева с блистающими очами». А попросту сказать, так называется одна глава из старинного сочинения индуса Бхаскара Ачария «Венец Астрономической Мудрости». Слово это в данном случае значит «благородная наука», а речь идет о решении уравнений. Ну, а у тетушки это просто такая поговорка.

— Так, — отвечал Илюша. — Ну, это по крайней мере хоть нетрудно. А древние индусы очень любили математику, если они придумывали для нее такие красивые имена?

— Ну еще бы! — произнес почтительно Радикс. — Ведь это они придумали нуль. А вычислять с нулем гораздо легче. Наши арабские цифры на самом деле индусские цифры. Вот, например, еще пифагоровы числа, — хоть они и называются пифагоровыми, на самом деле их надо называть вавилонские числа, ведь вавилоняне их знали раньше греков.

— А что такое пифагоровы числа? — спросил Илюша.

— Неужели ты не знаешь? — удивился Радикс. — это очень… Тесс! — вдруг сказал он, сделав серьезное лицо — Постой-ка… Ты ничего не слышишь?

Илюша прислушался и услыхал какие-то довольно медленные, ровные и тихие шаги.

— Кто-то идет сюда, — сказал он.

— Тише, тише! — зашептал Радикс. — Давай спрячемся.

Ты сейчас увидишь замечательное зрелище. Только смотри — ни одного звука. Тесс!..

Илюша и Радикс быстро юркнули в темный угол. Тихие шаги медленно приближались. И они звучали так приятно и гармонично, что казалось, будто слушаешь удивительную музыку, которая становилась вся яснее. И вот из мглы показались какие-то стройные, высокие фигуры.

Одна за другой перед глазами удивленного Илюши выходили из неопределенного тумана и двигались вперед высокие прекрасные женщины в легких одеждах, ниспадавших с их стройных фигур. Они смотрели куда-то вдаль, словно не замечая, что делается кругом, и странно улыбались, будто думая о чем-то, что только им одним известно. Илюша смотрел на них и думал, что эти женщины похожи на тех прекрасных мраморных греческих богинь, которых он в прошлом году видел с напой в Московском музее изобразительных искусств на Волхонке.

24