— Правильно. Мы можем даже это свойство — отсутствие петель — принять за определение того, что такое тупиковый лабиринт. Теперь от простого случая попробуем перейти к более сложному. Скажи-ка, нельзя ли превратить какой-нибудь лабиринт с петлями в тупиковый и как это сделать?
— Если бы я был строителем этого лабиринта, то отметил бы все петли и перегородил их, чтобы нельзя было больше пройти по ним кругом.
— Превосходно. Ну вот и расскажи мне подробно, как бы ты на месте строителя лабиринта все это сделал.
— Раньше всего, конечно, я бы достал план лабиринта и на нем начертил бы дорогу, начиная от входа и все дальше в глубь лабиринта. Каждый раз у кольцевого маршрута отмечал бы, что здесь ставлю перегородку… Ну, где бы ее поставить? Поставим в том конце кольцевого коридора, где он выводит опять к моим старым следам. Если так сделать, каждая петля станет тупиком, стало быть, я пройду ее всю, дойду до перегородки, поверну обратно, выйду из этого нового тупика и пойду дальше по основной дороге. Да буду посматривать, не набреду ли еще на петлю, которую надо перегородить. Когда я пройду таким образом на плане весь лабиринт…
— А уверен ты в том, что пройдешь таким образом действительно весь лабиринт?
— Кажется, уверен, — отвечал Илюша, размышляя. — Да,
— 66 —
разумеется, пройду весь лабиринт и даже дважды, потому что я ведь представляю себе лабиринт в виде хитро завинтившегося тупика с рядом петель. Но если лабиринт представляет собой тупик, то нет сомнений, что я его пройду дважды: один раз двигаясь в глубь тупиковых коридоров, а другой — возвращаясь из них обратно. Каждую петлю я превращаю перегородкой тоже в тупик, а следовательно, каждую петлю тоже обойду дважды. Так что у меня нет сомнении в том, что обойду весь лабиринт и пройду его два раза — туда и обратно.
Ошибиться можно только в том случае, если я пропущу какой-нибудь коридор, что может нарушить связность. Если этого не случится, то я обойду эту самую уникурсальную фигуру двойных путей.
— Молодец! — одобрительно пробурчал Радикс. — Теперь мы подошли к концу наших рассуждений. Подумай: нельзя ли обойтись без плана и ничего не замуровывать? Скажи, пожалуйста, знаешь ли ты древнегреческий миф о Тезее, Ариадне и страшном Минотавре?
— Как будто знаю.
— А ну-ка расскажи мне.
— В то древнее время на острове Крит царствовал жестокий царь Минос. И вот он обложил Афинское царство ужасной данью: афиняне должны были каждый год отправлять Миносу в дар семерых юношей и семерых девушек. А коварный Минос посылал их в лабиринт на съедение чудовищу Минотавру — получеловеку-полубыку. В Афинах тогда царствовал Эгей, и вот его сын Тезей, когда подрос, попросил отца отправить его на остров Крит, к Миносу, в числе семерых несчастных юношей, чтобы положить конец этой ужасной дани критскому царю. Эгей долго колебался, но потом решил исполнить просьбу своего воинственного сына. Тезей поехал на Крит, там его полюбила царевна Ариадна и дала ему путеводную нить. Тезей сразился с Минотавром, убил его своей булавой и вышел из лабиринта. А затем он уехал с острова Крит вместе с Ариадной.
— Верно, — сказал, усмехнувшись, Радикс. — Я вижу, что эта история с лабиринтом тебе понравилась. Ну, а как ты полагаешь, что он сделал с нитью Ариадны, когда пришел к лабиринту?
— Ну разумеется, он укрепил один конец у входа, а с клубочком пошел дальше, разматывая его.
— Значит, ничего не замуровывал и не перегораживал?
— Ясно. И плана у него не было. Он просто шел… Ведь нить Ариадны отмечала уже пройденный путь, так что если она попадалась ему поперек дороги — это значило, что он попал в петлю и пришел на то самое место, где уже был. И это,
— 67 —
Лабиринт УУУ.
План его путей
наверно, было сперва довольно жутко! Идешь, идешь и вдруг видишь — твоя нить лежит в новом коридоре. То есть это только так кажется, что он новый, а на самом-то деле ты уже в нем был (иначе откуда бы в нем взялась нить?). Что ж теперь делать?..
— 68 —
— Вот именно! — усмехнулся Радикс.
— Постой! — возразил мальчик. — Ты не торопись надо мной смеяться, это я просто рассуждаю вслух. Я хочу себе представить положение этого Тезея, которому казалось, что он идет вперед, а вдруг нить показывает, что он просто вернулся туда, где уже один раз был. Но ведь это как раз и означало бы, что он попал в петлю и находится в конце ее, там, где я ставил перегородку. Значит, чтобы правильно идти, он должен считать, что тот коридор, по которому он шел, перегорожен, то есть нужно вернуться, сдваивая нить. Тогда бы он шел точно так же, как я, когда превращал лабиринт в тупик. Значит, надо только следить за тем, чтобы идти ни разу не пересекать и не пропускать свободных коридоров, то есть идти как будто по тупиковому лабиринту.
— Отлично, юноша! — ответствовал Радикс. — Теперь ты, очевидно, сумеешь воспользоваться нитью Ариадны. Но у меня есть еще один маленький вопрос: нельзя ли эту нить из лабиринта вытащить обратно, чтобы вернуть ее с благодарностью царевне?
— Да очень просто: взять ее за конец и вытащить.
— Но ведь у тебя у выхода оба конца, то есть и начало и конец. Нельзя ли за оба конца взяться сразу?
— Из тупика можно, конечно, вытащить за оба конца…
Ах да, она и тут ведь лежит как в тупике! Ну разумеется, можно за оба конца тянуть.
— То-то и есть! А если бы ты бродил по лабиринту как попало, то за оба конца мог бы и не вытащить. Положим теперь, что ты уже дошел до центра лабиринта и надо идти назад. Не помогла бы тебе еще раз нить, то есть не смогла ли бы она указать, как сократить обратный путь?