— А на самом деле, когда математики ищут максимум, они тоже так поступают, как ты мне сейчас показывал, или ты это только для меня придумал?
— Так делали в старое время, во времена Ферма, например.
— 382 —
А сейчас это делают немножко не так. Смысл действий, впрочем, один и тот же.
— А как это теперь делается?
— Ну что ж, давай попробуем одолеть и эту премудрость. Если мы возьмем ту же самую функцию да еще припомним то, как мы рассуждали по вопросу о превращении секущей в касательную в предыдущей схолии, то справиться с этим будет не так уж трудно. Для этого нам необходимо, как ты, вероятно, помнишь, исследовать параболу с точки зрения изменения… Ну-ка, скажи мне: изменения чего?
— Я думаю, — довольно бойко отвечал Илюша, — что речь пойдет об изменении скорости, с которой растет функция.
— Правильно. Итак, приступим к изучению изменения скорости изменения функции. Для этого дадим независимой переменной, то есть иксу, некое приращение, которое мы обозначим через Δх. Здесь Δ — не множитель, а заменяющая слово «приращение» прописная греческая буква «дельта», которая читается, как наше «Д». А читается формула просто: «дельта икс». Приращение это не очень большое, не очень и маленькое, но, в общем, конечное. Теперь поскольку икс, независимая переменная, получил некое приращение (ну, допустим, что икс у нас равнялся двум, а теперь будет два и нуль-нуль-три после запятой), то, так как игрек есть переменная…
— Зависимая! — подсказал проворно Илья.
— … а следовательно, и она должна тоже… Что тоже?
— Тоже получит приращение.
— Ответ достойный. И мы назовем это приращение Δу, то есть «дельта игрек». Когда мы найдем приращения, то возьмем их отношение. Если все это изобразить на чертеже, то легко заметить, что получается тот же самый замечательный характеристический Паскалев прямоугольный треугольник, который ты видел на странице… (не спутай только этот Паскалев треугольник с другим, биномиальным Паскалевым треугольником, о котором шла речь в Схолии Седьмой!
Не забудь, что это характеристический дифференциальный треугольник, введенный впервые Архимедом!). Катетами его будут Δх и Δу, а гипотенузой будет прямая, которая рассечет нашу кривую и которую за это самое люди добрые зовут…
— Секущей, — отвечал мальчик.
— А теперь скажи, каков смысл этого отношения?
— По-моему, это будет тангенс угла α, — сказал Илюша.
— Несомненно. Только я тебя спрашиваю не про то, что это будет, а что это означает.
— Мне кажется, что этот тангенс как-то, может быть, и
— 383 —
грубо, но все же измеряет ту же самую скорость. Я заключаю это из того, что если все построение сдвинуть по абсциссе вправо или влево, не изменяя размеров приращения икса, то наклон секущей по отношению к положительному направлению оси абсцисс, — а следовательно, и тангенс соответствующего угла, — изменится. И изменится в соответствии с изменением скорости роста нашей функции.
— Превосходно, молодой человек! Но это все же еще не совсем точно. Давай-ка вычислим, чему же равно это отношение. Пусть до приращения икс достиг значения, которое мы обозначим просто х, а соответственный игрек — аналогично тоже просто буквой у, и пусть переменные, получив и та и другая свои приращения, получат значения x и у. В таком случае можно написать, что
Δх = x — х;
Δy = y — y = (18x — x) — (18x — х),
а следовательно, отношение их будет
Δx / Δy = (18x — х — 18x + х) / (x — x)
Вот что представляет собой тангенс наклона секущей. Ты был прав, говоря, что он измеряет скорость изменения функции. Но вот на что следует обратить внимание: а хорошо ли он ее измеряет? Ясно, что не очень хорошо, ибо его показания зависят от размера приращения независимой переменной. Это раз. Во-вторых, ясно, что секущая может дать указания на скорость лишь в среднем, на измеряемом промежутке, то есть только в общем, а отнюдь не в тех важнейших подробностях, которые могут понадобиться в исследовании. И вот в силу этих двух особенностей это показание недостаточно. Что же следует сделать и как с ним поступить, дабы его коренным образом улучшить? Для этого мы начнем сближать х и х, тогда y и у также начнут сближаться. И если мы будем все уменьшать и уменьшать расстояние между х и х, то при безграничном уменьшении секущая… Что сделает наша секущая?
— А как ты будешь уменьшать? — спросил в свою очередь Илья, глянув на чертеж.
— Я буду придвигать х к х справа налево.
— В таком случае
— 384 —
секущая станет поворачиваться около точки A. И в конце концов она станет не секущей, а касательной.
— Я бы только сказал не «в конце концов», а в пределе. Так! Ну, а теперь посмотрим, что получится с этим уменьшением приращений не на чертеже, а в нашей формуле отношения приращений:
Δx / Δy = (18x — х — 18x + х) / (x — x)
Дальнейшие преобразования уже несложны:
Δx / Δy = (18x — х — 18x + х) / (x — x) = [18(x — x) — (х — х)] / (x — x) =
= [18(x — x) — (х — х)(х + х)] / (x — x) = 18 — (х + х)