Волшебный двурог - Страница 121


К оглавлению

121

— Что-то я плохо понимаю, как это «постоянная»? Всегда одна и та же?

— Именно так: она всегда одна и та же и равна постоянной величине, входящей в полярное уравнение кривой. Зная уравнение кривой, мы уже знаем, чему равна длина поднормали. Слушай дальше и ты поймешь, в чем тут дело. Это особое свойство данной связи между радиусом-вектором r и полярным углом φ: если мы будем искать методами высшего анализа кривую, у которой поднормаль в полярных координатах постоянна, мы неминуемо придем к Архимедовой спирали. Это ее важное свойство подобно свойствам, определяющим «геометрическое место».

— И так будет в любой точке спирали?

— Разумеется! В этом-то и вся сила, что в любой. Это основной закон Архимедовой спирали. Напишем уравнение спирали в полярных координатах так, как мы писали в Схолии Двенадцатой уравнение кривых в декартовых координатах. Мы уже знаем, что длина радиуса-вектора в данном случае прямо пропорциональна углу, на который повернулся этот

— 358 —

вектор. Разумеется, когда вектор пройдет целый круг, то следующий круг мы начнем считать от 360°, это будет 361° (или в радианах 2π, а затем 2π + π/180 и так далее). Назовем радиус-вектор буквой r, а угол буквой φ и напишем уравнение:

r = αφ.

Это и будет самое простое уравнение спирали в полярных координатах. Чем больше угол, тем длиннее и радиус-вектор.

Пропорциональность может быть различной, поэтому в уравнении имеется коэффициент (или параметр) α.

— А что такое параметр?

— Параметр представляет собой определяющий коэффициент, характеризующий кривую. Так, например, угловой коэффициент прямой есть ее важнейший параметр.

В данном случае для нашей спирали α и есть постоянная поднормаль (или субнормаль) Архимедовой спирали. Чем он больше, тем шире и разворот спирали. Чем он меньше, тем ближе один к другому ложатся витки спирали. Он либо раздвигает, либо сдвигает спираль. Например, когда ты заводишь часы с пружиной, то она сжимается. Полагая, что пружина в плане близка к Архимедовой спирали, ты, заводя часы, уменьшаешь ее параметр а.

— Как будто что-то я начинаю соображать, — сказал Илюша. — Это немного похоже на то, если изменять угол конуса при вершине. Конус, конечно, станет другой.

— В этом роде. А теперь мы уже подходим к концу нашего рассказа. После того как Архимед установил это замечательное свойство спирали, он нашел еще и выражение ее полярной подкасательной (субтангенса). Если уравнение спирали таково, как мы написали, то в современных обозначениях полярная подкасательная спирали будет равна . Теперь если у нас некоторый угол φ будет равен 2π

— То есть если радиус-вектор обойдет целый круг?

— Именно! Тогда соответствующий этому углу радиус-вектор по нашему уравнению будет равен: r = 2πα, а его подкасательная по ее уравнению, которое мы только что записали, будет:

4πа = 2πr,

то есть равна длине окружности, радиусом которой является радиус-вектор в конце первого витка спирали. Вот и получается при помощи геометрического построения совершенно точное определение длины окружности. Об этом и говорил византиец Евтокий Аскалонский. Средневековые математики не разобра-

— 359 —

лись в том удивительном построении, которое мы сейчас вкратце рассмотрели. То, что писал тонкий комментатор Архимеда — Евтокий об этом решении, вовсе их сбило с толку: начали даже поговаривать, что «по-видимому» сама геометрия — наука «неточная»! Их путало еще и то, что им уже было известно о существовании целого ряда приближений для определения числа π: в библии дается число 3,0; у Витрувия, римского архитектора, — 3,125 (вавилонское приближение); у самого Архимеда — 3,14… Которое из решений правильно? А спирали Архимеда вовсе не давали численного решения, что еще больше их смущало.

— Как интересно! — воскликнул Илюша. — Это напоминает случай с диагональю квадрата: построить — одна минута, а вычислить невозможно. Только со спиралью гораздо сложнее…

— Это верно. Но надо еще принять во внимание, что это не простое геометрическое построение, а такое, в которое входит «механическая кривая», для которой движение есть очень важный элемент. Многие древнегреческие математики были из-за этого не совсем довольны построением Архимеда, хотя это самый настоящий шедевр математической изобретательности и остроумия. Однако разобрать весь ход рассуждений Архимеда, понять все его доказательства — дело не такое простое, как мой коротенький рассказ. Уникурсал Уникурсалыч тебе объяснил, как ты должен поступить. Ты понял?

— Почти… Я буду стараться…

— Стоит постараться, уверяю тебя. Это замечательное сочинение Архимеда оказало огромную помощь европейским ученым, когда они начали строить высший математический анализ.

— А почему ты вспоминал про веретена и про центры тяжести?

— Центры тяжести различных тел тоже вычисляются путем интегрирования. Что же касается веретена, то это веретено Торичелли…

— Это тот самый, чья «торичеллиева пустота»?

— Тот самый. И его веретено — тело вращения, которое получается вращением кривой обратных величин вокруг оси игреков. Это было очень интересным и неожиданным открытием. Оно было сделано в одно и то же время Торичелли и замечательным математиком Бонавентурои Кавальери, чье имя тебе тоже должно быть известно. Дело в том, что вершина этого

— 360 —

тела уходит невероятно тонкой иглой в бесконечность. И все-таки оказалось, что объем этого бесконечно длинного тела вычислить можно, так как игла, уходя вверх, безгранично утончается, причем это утончение происходит таким образом, что уменьшение ее толщины компенсирует ее удлинение.

121