Волшебный двурог - Страница 118


К оглавлению

118

— Видишь ли, — начал Радикс, — при помощи шашечницы очень удобно производить некоторые суммирования. Но только мы не будем обязательно устанавливать, сколько у нас полей на шашечнице, ибо для наших целей необязательно, чтобы их было шестьдесят четыре. Будем считать, что доска имеет n вертикальных и горизонтальных полос, а следовательно, n меток. Установим сперва два способа сложения чисел, которые мы будем писать в клетках доски. Первый способ будем

— 348 —

называть сложением «по прямым». При этом способе мы будем складывать сперва все числа данной полосы (ну, например, если бы сложили все восемь чисел, написанных на седьмой полосе, если считать снизу), а затем сложим и все их суммы. Второй способ мы будем называть сложением «по гномонам». В этом случае мы будем поступать так: первым слагаемым будет одно число из верхней левой клетки (шахматисты называют эту клетку «а8»), вторым — сумма чисел в клетках вертикальной полосы «b» и горизонтальной полосы седьмой вплоть до их пересечения (клетка b7) и включая оное (то есть клетки b8, b7 и а7). Всего во втором слагаемом будет, значит, три клетки. Третье слагаемое состоит из пяти чисел, находящихся в клетках вертикальной полосы «с» и в клетках горизонтальной полосы шестой до их пересечения (клетка с6) и опять-таки включая оное (то есть клетки с8, с7, с6, b6 и а6).

Все остальные слагаемые составляются по тому же принципу (затем, очевидно, пойдет гномон с клеткой пересечения «d5», затем «е4» итак далее). Теперь приступим к самому счету. Начну с того, что напишу в каждой клетке по единице. Если их считать «по прямым», то в каждой полосе будет n. А полос во всей доске тоже n. Ясно, что на всей доске получится n. Но теперь попробуем считать «по гномонам». Получим:

1; 2 + 1; 3 + 2; …; n + (n-1).

Сумма всех этих чисел будет, очевидно,

1 + 3 + 5 + … + 2n1.

Приравнивая сумму «по прямым» сумме «по гномонам», получаю:

1 + 3 + 5 + … + 2n — 1 = n,

то есть сумма и нечетных чисел равна n. Как будто недавно мы с тобой уже встречались с этим вавилонским равенством?

— Встречались, — отвечал Илюша.

— Прелестно! — обрадовался Радикс. -Хорошо, что ты не забыл об этом. А теперь далее. Я напишу в каждой горизонтальной полосе числа от единицы до n, то есть

1, 2, 3, 4, 5, … , n,

и ясно, что сумма их будет равна в каждой полосе

(n + 1)n / 2,

— 349 —

по правилу суммы арифметической прогрессии. Раз это так, то ясно, что сумма всех полос доски будет равна

(n + 1)n / 2

Теперь рассмотрим, каковы будут суммы «по гномонам». Ясно, что сумма чисел энного гномона будет

n+ (1 + 2 + 3 + … + n-1).

Эту сумму можно записать еще иначе, то есть:

n+ n(n + 1) / 2

и окончательно:

n — (1/2)n

Теперь я буду давать в этой формуле числу и значения 1, 2, 3… и до n включительно. Суммы тогда будут равны по окончательному написанию:

3/2 · 1 — 1/2 · 1

3/2 · 2 — 1/2 · 2

3/2 · 3 — 1/2 · 3

………

………

3/2 · n — 1/2 · n

Сложив все это столбиком, получаю для всех полос:

3/2 · S — 1/2 · S

где S есть сумма квадратов первых и натуральных чисел, а S — сумма их первых степеней. Приравнивая, как и ранее, сумму «по прямым» сумме «по гномонам», получаю:

3/2 · S — 1/2 · S = n(n + 1) / 2

— 350 —

а отсюда определяю, чему равняется S и после ряда несложных переделок, которые, конечно, ты и сам не откажешься выполнить, получаю сумму квадратов первых и натуральных чисел, которая будет:

S = (2n + 1)(n + 1)n / 6.

Советую тебе еще написать в клетках шашечницы пифагорову таблицу умножения и по ней найти, чему равна сумма кубов первых n чисел. Если же ты напишешь в клетках квадраты чисел пифагоровой таблицы, то сможешь найти и сумму пятых степеней. Однако нам пока это все, кроме суммы квадратов, не понадобится. Приступим теперь к вопросу об интегрировании. Допустим, что нам дана парабола, уравнение которой будет:

y = х,

и нам нужно эту функцию проинтегрировать, или найти площадь, ограниченную параболой от начала координат до точки с абсциссой b, то есть площадь, ограниченную отрезком самой параболы, отрезком оси абсцисс и ординатой в точке х = b.

Для этого мы сначала делим интервал (то есть отрезок абсциссы) от нуля до b на n равных частей. Длина каждой такой части будет

h = b / n

Вся площадь теперь разбита на трапецоиды, ширина каждого из которых равна, как уже указано, b/n, а вышину мы определяем, согласно уравнению кривой, для последовательных точек параболы, как

h, 2h, 3h, … , nh,

ибо ясно, что если х равен h, то у будет равен h и так далее.

Но если это так, то площади последовательных прямоугольников, которыми мы заменяем наши трапецоиды, будут равны

hh, h2h, h3h, … hnh.

— 351 —

Видно, что сумма прямоугольников больше, нежели сумма трапецоидов, но при безграничном увеличении числа n искомая площадь будет пределом суммы прямоугольничков, то есть пределом следующего выражения:

118